Sensitivity Enhancement in Si Nanophotonic Waveguides Used for Refractive Index Sensing

نویسندگان

  • Yaocheng Shi
  • Ke Ma
  • Daoxin Dai
چکیده

A comparative study is given for the sensitivity of several typical Si nanophotonic waveguides, including SOI (silicon-on-insulator) nanowires, nanoslot waveguides, suspended Si nanowires, and nanofibers. The cases for gas sensing (ncl ~ 1.0) and liquid sensing (ncl ~ 1.33) are considered. When using SOI nanowires (with a SiO₂ buffer layer), the sensitivity for liquid sensing (S ~ 0.55) is higher than that for gas sensing (S ~ 0.35) due to lower asymmetry in the vertical direction. By using SOI nanoslot waveguides, suspended Si nanowires, and Si nanofibers, one could achieve a higher sensitivity compared to sensing with a free-space beam (S = 1.0). The sensitivity for gas sensing is higher than that for liquid sensing due to the higher index-contrast. The waveguide sensitivity of an optimized suspended Si nanowire for gas sensing is as high as 1.5, which is much higher than that of a SOI nanoslot waveguide. Furthermore, the optimal design has very large tolerance to the core width variation due to the fabrication error (∆w ~ ±50 nm). In contrast, a Si nanofiber could also give a very high sensitivity (e.g., ~1.43) while the fabrication tolerance is very small (i.e., ∆w < ±5 nm). The comparative study shows that suspended Si nanowire is a good choice to achieve ultra-high waveguide sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Silicon Nanophotonic Devices: Enhancing Light Emission, Modulation, and Confinement

Silicon has become an increasingly important photonic material for communications, information processing, and sensing applications. Silicon is inexpensive compared to compound semiconductors, and it is well suited for confining and guiding light at standard telecommunication wavelengths due to its large refractive index and minimal intrinsic absorption. Furthermore, silicon-based optical devic...

متن کامل

طراحی حسگر زیستی کریستال فوتونی مبتنی بر نانوتشدیدگر

A photonic crystal biosensor based on nano-resonator is presented in this paper. The nano-resonator is constructed in the middle of structure and is surrounded by two waveguides. The resonator is formed by reducing the size of air holes. In order to better optical coupling between the waveguides and resonator, two limited waveguide are used. By binding the molecular biological to the sensing ho...

متن کامل

Nanophotonic Filters and Integrated Networks in Flexible 2D Polymer Photonic Crystals

Polymers have appealing optical, biochemical, and mechanical qualities, including broadband transparency, ease of functionalization, and biocompatibility. However, their low refractive indices have precluded wavelength-scale optical confinement and nanophotonic applications in polymers. Here, we introduce a suspended polymer photonic crystal (SPPC) architecture that enables the implementation o...

متن کامل

Two-curve-shaped biosensor using photonic crystal nano-ring resonators

We design a novel nano-ring resonator using two-dimensional photonic crystal (2D-PhC), for bio-sensing applications. The structure of biosensor is created by two-curve-shaped ring resonator which sandwiched by two waveguides. These are configured by removing one row of air holes. The refractive index of sensing hole is changed by binding an analyte. Hence, intensity of the transmission spectrum...

متن کامل

Modeling of Slow-light Structure for Sensing of Watery Solutions

Theoretical investigations on the enhancement of integrated optical sensor performance by utilizing the slow-light phenomenon are presented. For this study, we take a sensor consisting of a Mach-Zehnder Interferometer (MZI) [1] layout, which employs ring-resonator-based coupled-resonator optical waveguides (CROWs) slow-light structures in both the sensing and reference arms. The waveguides are ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016